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Three-dimensional multiscale modeling of dendritic spacing selection
during Al-Si directional solidification
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We present a three-dimensional extension of the multiscale Dendritic Needle Network (DNN) model. This
approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in
spatially extended dendritic arrays. We apply the model to directional solidification of an Al-9.8wt%Si
alloy and directly compare the model predictions with measurements from experiments with in situ X-ray
imaging. We focus on the dynamical selection of primary spacings over a range of growth velocities, and
the influence of sample geometry on the selection of spacings. Simulation results show a good agreement
with experiments. The computationally-efficient DNN model opens new avenues for investigating the
dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.

Introduction

Dendritic microstructures are ubiquitous to cast
metals and alloys. The geometrical features of these
structures are crucial to mechanical properties of a
cast part, and subsequently to its performance dur-
ing service [1]. For instance, the primary spacing
between main dendrite trunks has a fundamental in-
fluence on the strength of a dendritic grain. Hence,
being able to understand the selection mechanisms
and to predict the spacings resulting from given so-
lidification conditions are key to explore and develop
innovative alloys and processes.

Early experiments suggested that the primary spac-
ing Λ depends on the growth (or pulling) velocity
Vp as Λ ∼ V −νp with an exponent ν = 0.5 [2] or
0.25 [3, 4]. It was later shown that, even though a
similar history leads to a similar spacing [5, 6, 7, 8],
a wide range of spacings may be selected for the
same control parameters [9, 10]. In particular, pri-
mary spacing evolution exhibits a hysteretic depen-
dence with a change of growth velocity [11]. A semi-
analytical model has been proposed by Warren and
Langer to predict the primary spacing that is dy-
namically selected through a sequence of primary
branch elimination processes, which causes the array
spacing to increase transiently in time after morpho-
logical instability of the planar interface until reach-

ing a steady-state value [12]. Other models of spac-
ing selection have been proposed based on geometri-
cal arguments [13, 14]. Those latter models assume
steady-state growth dynamics and estimate the up-
per limit of stable spacing Λmax to be about twice the
lower limit Λmin [13], while recent numerical studies
have predicted a ratio Λmax/Λmin closer to three or
four [15, 16]. (For a brief review of primary spacing
selection theory, see section 2.1 of Ref. [17]).

On a larger scale, models based on volume-averaged
methods such as cellular automata coupled with fi-
nite elements [18, 19] have been developed to predict
the grain structure of castings. Those models de-
scribe the stochastic nucleation of new grains and are
therefore able to model complex phenomena such as
the columnar-to-equiaxed transition [20]. However,
they only predict grain envelope shapes and rely on
phenomenological scaling laws for dendritic spacings
to estimate key parameters such as the solutal diffu-
sion length within a grain.

On a dendrite scale, phase-field (PF) modeling has
established itself over the past two decades as the
method of choice to predict complex solid-liquid in-
terface patterns [21]. Theoretical developments of
the thin interface limit [22] and the anti-trapping
current [23] opened the way to quantitative mod-
eling of alloy solidification. Additionally, the fast
increase in computational resources and the devel-
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opment of advanced numerical methods, such as
adaptative remeshing [24] and massive paralleliza-
tion [25, 26], have allowed PF simulations up to the
scale of three-dimensional arrays of cells [27] or den-
drites [26].

Phase-field simulations are thus capable of predict-
ing stable dendritic spacing ranges in the steady
state [28, 29, 30, 27], as well as the dynamical selec-
tion of spacings by elimination during the transient
stage of solidification [31, 32, 30]. Recent PF studies
have also shown that, in polycrystalline columnar
growth, the dynamical evolution of dendritic spac-
ing at converging grain boundaries is closely linked
to the unusual overgrowth mechanism of a favorably
oriented grain [33, 34, 17].

While PF remains the method of choice for the simu-
lation of dilute alloy solidification, quantitative pre-
dictions of dendritic growth dynamics with PF re-
quire an accurate morphological description of each
dendrite tip. This makes PF simulations extremely
challenging for concentrated alloys that usually so-
lidify as a hierarchical network of well-developed
branches (Fig. 1a) with several orders of magnitude
separating the scale of a dendrite tip radius and the
larger scale of diffusive transport in the melt.

For such multiscale problems, we developed in
two dimensions (2D) a Dendritic Needle Network
(DNN) approach [16] that is aimed at bridging the
length scale gap between phase-field and volume-
averaged models. We recently extended this model
to 3D [36]. DNN simulations reproduce well-know
steady-state solutions, as well as transient early
stages of equiaxed growth in both 2D [16] and
3D [36]. In 2D, where the direct comparison to
PF is still achievable, the model provides a rea-
sonable quantitative agreement with PF predictions
for transient isothermal growth dynamics. Further-
more, DNN predictions remain quantitative up to a
numerical grid spacing comparable to the dendrite
tip radius, which is typically one order of magni-
tude larger than the grid spacing required to resolve
the spatially diffuse interface in PF models. Hence
when both DNN and PF models are discretized on
a finite-difference grid and the diffusion equation is
solved by explicit time stepping, DNN simulations
are faster than PF simulations by four to five orders
of magnitude in 2D and 3D, respectively.

⇢
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If both lE=!V and "̄ obtained for various dendrites are
plotted as a function of the diffusion length lD

T at the tip, no
simple relation is found. In particular for slow dendrites lE
=!V and "̄ become very large as compared to lD

T . This may
appear surprising because the independent growth of differ-
ent dendrites would be expected to occur whenever the den-
drites are separated by a distance larger than a few diffusion
lengths. But the question of the independent growth of two

side branches differs from that of the independent growth of
parallel dendrites. In order to become free, the branches must
first escape out of the diffusion field of the lateral side of the
primary dendrite. For very fast dendrites this occurs rather
close to the tip in a region where the lateral front is still
growing fast and the diffusion length is of the order of lD

T . In
contrast, in slower dendrites, the escape occurs much further
away from the tip in a region where the mean motion is slow
and where the local diffusion length has thus become large.
Only branches much further away from each other can then
become independent.
A reasonable assumption is that a branch can only become

free when it has become larger than some fraction of the
local mean diffusion length of the lateral front. This length at
a given abscissa x grows as the square root of time !relation
"6#$. Since the growth exponents #n are larger than 0.5, the
branches can, in principle, approach the diffusion front.
For these reasons the relevant comparison is that of both

lE=!V and "̄ with the local lateral diffusion length lD
S in the

region where this escape occurs. This length lD
S can be com-

puted fixing t=! in relation "6# and using the values of D and

FIG. 11. Four photographs taken respectively at a time to and
to+9.2 s, to+13 s, to+20 s, of one side of a dendrite growing at
velocity V=64 $m/s. The length of the region shown here is of the
order of L=2.2 mm.

FIG. 12. Photograph of the global structure of a dendrite grow-
ing at velocity V=87 $m/s. The length of the region shown here is
L=3.6 mm.
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Figure 1: The Dendritic Needle Network model
represents a dendritic grain, like the ammonium-
bromide crystal from Ref. [35] in (a), as a hier-
archical network of needle-like branches interacting
through the long range diffusion field, as illustrated
in (b). The instantaneous tip radius ρ(t) and velocity
V (t) of each branch is established by combining two
conditions at distinct length scales: (c) a solute con-
servation condition at an intermediate scale larger
than the tip radius ρ, but smaller than the diffusion
length D/V , and (d) a solvability condition at the
scale of the tip radius ρ.

In this paper, we illustrate the application of the
3D DNN model with the example of directional so-
lidification of an Al-9.8wt%Si alloy and we compare
modeling predictions with experiments for different
growth velocities. We summarize in the next section
the DNN model for directional solidification in 3D.
We then describe the experimental procedure for in
situ X-ray imaging during Al-Si directional solidifica-
tion, and present specific simulations performed for
quantitative comparison with experiments. Finally,
we discuss primary spacing selection as a function
of growth velocity, as well as the influence of mold
geometry for given thermal conditions.

Dendritic Needle Network model

In concentrated alloys, dendritic grains often grow as
hierarchical structures of sharp needle-like branches,
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as illustrated in Fig. 1a. In the DNN model, such a
grain is represented by a network of thin branches,
as in Fig. 1b. In the diffusive regime, the solute con-
centration in the melt c follows

∂tc = D∇2c (1)

with D the diffusion coefficient. Assuming diffusion
is negligible in the solid phase, the solid-liquid inter-
face locally grows at a velocity vn given by

(1− k)clvn = −D∂nc|i (2)

with k the interface solute partition coefficient, cl
the solute concentration on the liquid side of the in-
terface, and ∂nc|i the concentration gradient normal
to the interface in the liquid. Additionally, interface
equilibrium yields the Gibbs-Thomson condition

T = TM +mcl − Γf(ϑ)κ (3)

where T is the temperature, TM is the melting tem-
perature of the pure solvent, m is the alloy liquidus
slope, γ0f(ϑ) = γ(ϑ) + d2γ(ϑ)/dϑ2 is the interface
stiffness where γ(ϑ) is the excess free-energy of the
solid-liquid interface dependent of the orientation ϑ
and γ0 is its value averaged over all orientations,
Γ = γ0TM/L is the Gibbs-Thomson coefficient where
L the latent heat of fusion per unit volume, and κ is
the interface curvature.
In constrained solidification within a given tempera-
ture gradient G at a fixed growth velocity (or pulling
velocity) Vp in the x direction, the temperature field
has the form

T = T0 +G(x− Vpt) (4)

where T0 is a reference temperature, here chosen as
the solidus temperature of the alloy, with its cor-
responding liquid equilibrium composition for a flat
interface given by c0

l = (TM−T0)/|m| = c∞/k where
c∞ is the nominal composition of the alloy. Thus, the
Gibbs-Thomson condition can be rewritten as

cl
c0
l

= 1− (1− k)d0f(ϑ)κ− (1− k)
x− Vpt
lT

(5)

where d0 ≡ Γ/
[
|m|(1− k)c0

l

]
is the capillarity length

at T0 and lT ≡ [|m|(1−k)c0
l ]/G is the thermal length.

We introduce the reduced solute field

u ≡ c0
l − c

(1− k)c0
l

. (6)

The equilibrium value of u on the liquid side of
the interface is thus ui = (c0

l − cl)/
[
(1− k)c0

l

]
, and

the sharp-interface problem defined by the diffusion
equation in the melt (1), the mass conservation Ste-
fan equation (2) and the equilibrium Gibbs-Thomson
condition (3) summarizes to

∂tu = D∇2u , (7)[
1− (1− k)ui

]
vn = D∂nu|i , (8)

ui = d0f(ϑ)κ+
x− Vpt
lT

, (9)

together with the far-field condition c→ c∞ as

u(x→ +∞) = 1 . (10)

Then, in order to calculate the instantaneous growth
velocity V (t) and ρ(t) of the tip of each dendritic
branch, we combine two independent conditions at
distinct length scales. Given the scale separation be-
tween the needle tip radius ρ and the diffusion length
D/V , one can write a mass conservation condition
at an intermediate scale � D/V , such that diffu-
sion is quasi-instantaneous, but � ρ, such that the
needle appears like a very thin paraboloid of negligi-
ble curvature along its sides, as illustrated in Fig. 1c.
We integrate the solute conservation at the interface,
D∂u/∂n ≈ vn, over a length a between the tip loca-
tion xt and xt−a (see Fig. 1c). If the needle tip has a
circular cross section of radius ri(x) =

√
2ρ(xt − x),

the integration over a surface Γ1 between x = xt and
x = xt − a yields

D

∫∫
Γ1

∂u

∂n
dΓ1 =

∫ 2π

0

∫ ra

0
V r dr dθ = 2πaρV (11)

with ra =
√

2ρa the radius of the paraboloid at
x = xt − a. Thus, the flux condition at the tip is

ρV = DF , (12)

where we defined the flux intensity factor

F ≡ 1

2πa

∫∫
Γ1

∂u

∂n
dΓ1 . (13)

In order to calculate F , we consider Laplace equa-
tion in a moving frame of velocity V around the tip,

D∇2u = −V ∂u
∂x

. (14)
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Thus, if we integrate ∇2u over a volume Σ bounded
by the surfaces Γ0 and Γ1, as shown in Fig. 1c, we
can use the divergence theorem to write∫∫

Γ1

∂u

∂n
dΓ1 −

∫∫
Γ0

∂u

∂n
dΓ0 = −

∫∫∫
Σ
∇2udΣ

=
V

D

∫∫∫
Σ

∂u

∂x
dΣ ,

(15)

choosing a normal n pointing outward of the closed
contour (Γ0 + Γ1) along Γ0, while pointing outward
of the dendrite, i.e. inward the contour, along Γ1 —
hence the minus sign in the left hand side of Eq. (15).
Thus, F can be calculated from Eq. (13) where the
integral along Γ1 is given by∫∫

Γ1

∂u

∂n
dΓ1 =

∫∫
Γ0

∂u

∂n
dΓ0 +

V

D

∫∫∫
Σ

∂u

∂x
dΣ ,

(16)

using any given surface Γ0 intersecting the needle at
x = xt − a, and its corresponding inner volume Σ.
We combine the first condition (12) with a solvabil-
ity condition at the scale of the tip radius ρ, as illus-
trated in Fig. 1d. This condition for the existence of
a growing shape-preserving paraboloid can be writ-
ten as [37, 38, 39]

ρ2V =
1

1− (1− k)ut

2Dd0

σ
, (17)

where the first factor on the right side stands for the
temperature dependence of the capillarity length.
With d0 expressed at the reference (solidus) temper-
ature T0, the capillarity length at the tip location
d∗0 = d0/[1 − (1 − k)ut] depends on the equilibrium
concentration for a flat interface at the tip location
ut [16]. Phase-field calculations have validated the
steady-state solvability theory [40], and have also
shown that ρ2V reaches a constant value during the
early growth stage while both ρ(t) and V (t) exhibit
significant variations in time [41], which allows us to
use the relation (17) at all time in the model.
In summary, the three-dimensional DNN model for
directional solidification is obtained by coupling the
diffusion equation in the melt (7) with a network of
needles at interfacial equilibrium, i.e. at u = ui ≈
(x − Vpt)/lT . The tip growth velocity V (t) of each
individual branch is obtained by combining Eqs (12)

and (17). While the product ρ(t)2V (t) is constant,
with σ set by the strength of interface free-energy
anisotropy [38], the product of ρ(t)V (t) evolves in
time like the flux intensity factor F(t), given by
Eqs (13) and (16), which captures the long-range
evolution of the solute field.
Additionally, as proposed in Ref. [16], sidebranches
are generated periodically at a distance d = (N ±
∆N/2)ρ behind a needle tip of radius ρ each time
the needle grows by a distance d, with an initial
sidebranch length lSB0 =

√
2ρd + ρ. The frequency

of sidebranching events N and its fluctuation ampli-
tude ∆N are input parameters to the model, cho-
sen to match experimental observations, i.e. side-
branches appearing at a distance of five to ten tip
radii behind the parent tip [35]. We have shown that
as long as sidebranching is frequent enough for com-
petition among branches to occur, the exact choice of
the input parameters N and ∆N has little influence
on the final selected spacings [16].
One limitation of the current implementation is that
it does not describe the lateral movement of den-
drites. Independent phase-field simulations show
that the lateral drift velocity of dendrites induced by
inhomogeneities of spacings within a well oriented
grain is orders of magnitude smaller than the so-
lidification front velocity. Hence, this drift has a
negligible effect on spacing selection in the present
simulations, which is controlled by elimination and
tertiary branching of well-oriented dendrites. How-
ever, in applications to polycrystalline growth com-
petition, the current implementation does not de-
scribe the lateral movement of dendrites that is for
instance responsible for the unusual overgrowth of
favorably oriented dendrites at a converging grain
boundary [33, 34].

Directional solidification experiments

We benchmark the predictions of the model against
well-controlled directional solidification experiments,
combined with in situ X-ray radiography.
We prepared an aluminum-silicon alloy of nominal
composition c∞ = 9.8 wt%Si by inductive melting
of high purity (99.999%) Al and Si together in an
argon atmosphere in a graphite crucible. The re-
sulting ingot was homogenized at 575◦C for 24 hours
and furnace cooled, then was surface-ground to re-
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move the thin oxide, and warm-rolled to a thickness
of 200 µm. Chemical analysis of the final foils using
DC Plasma Emission Spectroscopy (ASTM E 1097-
12) confirmed a composition of Al-9.78%wtSi with
a trace amount of Zn (0.037 wt%). No other trace
elements were found in excess of 0.003 wt%.

To proceed with the solidification experiments, we
placed a sample in a boron nitride crucible that was
inserted into a slotted steel rod with a hole normal to
the X-ray beam direction. The steel rod was heated
by two independent induction coils above and be-
low the sample position and was equipped with a
dozen thermocouples at different locations to pro-
vide measurement of the thermal conditions. We set
and stabilized the temperature gradient in the rod
with the temperature of the coils above (top) and
below (bottom) the melting point of the alloy. We
then reduced the power in the coils to let the so-
lidification proceed from the bottom of the sample
upward, using feedback control from the thermocou-
ples to ensure a constant cooling rate. (Pictures and
schematics of the experimental setup appear in the
attached Supplementary Material.)

X-ray radiography images were captured in situ us-
ing a monochromatic synchrotron beam at 18 keV at
the Sector 32 Insertion Device beamline at Argonne
National Laboratory’s Advanced Photon Source. Af-
ter passing through the sample, X-rays impinge upon
a scintillator where they are converted to visible
light, reflected by a mirror, and then captured with
a camera that records the field-of-view of approx-
imately 1.4×1.7 mm2 in 1024×1280 pixel images,
with a demagnified pixel size of 1.36 µm and a frame
rate of 3.54 Hz.

We extracted dendrite tip velocities from image pro-
cessing, and temperature gradients from thermocou-
ple measurements. We compare the simulations re-
sults to three experiments, with a temperature gradi-
entG ≈ 54±0.2 K/cm and different growth velocities
Vp ≈ 40 ± 8, 106±20, and 285±50 µm/s. Figure 2
shows an example X-ray image for G ≈ 54 K/cm
and Vp ≈ 285 µm/s.

200 μm 	



Figure 2: X-ray radiography image of an Al-
9.8wt%Si directional solidification experiment, for a
temperature gradient G ≈ 54 K/cm and a growth
velocity Vp ≈ 285 µm/s.

Simulations

We investigate the dynamical selection of primary
dendritic spacings during the directional solidifica-
tion experiments described in the previous section
using three-dimensional DNN simulations. Simula-
tions are discretized using a finite difference cubic
grid of uniform mesh size ∆x, and an explicit Euler
time scheme with a time step ∆t ≈ ∆x2/(6D). The
model is implemented on Graphic Processing Units
(GPUs) using the Compute Unified Device Archi-
tecture (CUDA). Each simulation was achieved in
single precision on a single GPU. We used the al-
loy, process and numerical parameters listed in Ta-
ble 1. Alloy parameters are taken from the litera-
ture [43, 44]. From Ref. [38], the tip selection pa-
rameter corresponding to an interfacial anisotropy
strength ε4 = 0.012 [45] is σ ≈ 0.058 for a one-sided
model in 3D. We use a finite difference grid spacing
between 1.6 and 2.1 times the analytical steady-state
tip radius ρs, calculated using microscopic solvability
together with the Ivantsov solution [46, 44]. During
the simulations, we track the position of the most
advanced tip and shift the domain periodically to
keep this position fixed in the simulation box. In
order to prevent numerical instabilities due to the
constancy of ρ2V when a needle is stopped and its
tip velocity V decreases to zero, we bound the thick-
ness of the needles to 3ρs [36]. At the tip of each
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needle, the integration surface Γ0 for the evaluation
of F(t) spans three grid points behind and three grid
points ahead of the tip location in the direction of
the needle growth, and in the two directions normal
to the needle growth it is one grid point wider than
the thickness of the needle at its intersection with
Γ0. All boundary conditions are set to symmetric,
i.e. no solute flux through the domain boundaries.
The size of the simulation in z is 100 µm, to simulate
one half of the experimental sample thickness.

Table 1: Simulation parameters.

Symbol Value Unit

c∞ 9.8 wt%Si
m -6.5 K/wt%Si [43]
D 3 10−9 m2/s [44]
Γ 1.96 10−7 Km [43]
k 0.13 [43]
σ 0.058
G 54 K/cm
Vp 40, 75, 106, µm/s

175, 225, 285
∆x 1.62, 1.88, 1.94, ρs

1.97, 1.84, 2.08
∆x 4.76, 4.0, 3.45, µm

2.70, 2.22, 2.22
∆N 10
N 15

We perform three series of simulations. The first se-
ries aims at characterizing the primary spacing sta-
bility range for the velocity range relevant to the
experiments. In order to do so, we proceed simi-
larly as in Ref. [16]. For a given set of conditions,
we start a simulation with two needles located along
the opposite y boundaries of the domain, and repeat
the simulation with different sizes of the domain in
the y direction, thus testing the stability of two pri-
mary branches at a given initial spacing. If the y-
dimension (i.e. the initial spacing) is too low, one of
the two primary branches is eliminated and only one
primary needle and its sidebranches remain at the
end of the simulation. If the initial spacing is stable,
the two primary needles still coexist in the steady-
state. If the initial spacing is too high, one of the two
primary trunks will be at the origin of a tertiary side-
branch that will stabilize as a new primary dendrite
between the two initial dendrites. We perform those

simulations for the three experimental growth veloc-
ities (40, 106, and 285 µm/s), as well as three inter-
mediate velocities (75, 175, and 255 µm/s). Sorted
by increasing growth velocity, the simulation sizes in
the growth direction x are 5780, 4080, 2310, 1720,
1420, and 1380 µm, and the simulated times are 300,
240, 180, 140, 100, and 60 seconds. Like in all simu-
lations in this paper, we start with primary dendrites
within the (z = 0) plane, with their tips located at
the liquidus temperature.

The second series of simulations investigates the dy-
namical selection of spacing in spatially extended
dendrite arrays. Similarly as in 2D in Ref. [16],
we simulate primary spacing selection by elimina-
tion/coarsening after the destabilization of a planar
front, by starting a simulation with several primary
needles evenly spaced in the y direction. We simu-
late the three experimental growth velocities V = 40,
106, and 285 µm/s, respectively using domains of
(x × y) dimensions (5471×5014), (2086×3134), and
(1344×2020) µm2, respectively initialized with 118,
102, and 102 needles. We apply a random pertur-
bation of amplitude 10−3∆x on the initial size of
the needles in order to break the initial symmetry
of the problem and prevent numerical rounding er-
rors as the only origin of the planar front destabi-
lization [16]. For similar velocities and domain sizes,
we also investigate the spacing selection by tertiary
branching, as in Ref. [16], with a simulation starting
as one steady-state primary dendrite growing within
1/10 of the total y dimension, and abruptly increas-
ing the cross-section to the whole size in y.

The third and final series of simulations explores the
influence of the mold geometry on the primary spac-
ing selection by branching. Similarly as in the case of
a sudden cross-section increase, we start the simula-
tion with one primary dendrite growing in a channel
of 1/10 of the total y-dimension. The cross-section in
the y direction then increases linearly, simulating a
wedge-shaped mold with sides at an angle θ with the
thermal gradient direction, as schematized Fig. 3.
(The case of a sudden cross-section widening hence
corresponds to the limit θ = 90◦.) In the code, the
sides of the wedge are implemented as steps, com-
posed of no-flux boundary conditions along x and
y. (Details and schematics of the boundary condi-
tions appear in the attached Supplementary Mate-
rial.) For a velocity Vp = 106 µm/s and a size in
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(x × y) of (2086×2031) µm2, we explore values of
tan(θ) = 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2.5, 5, and 10.

Mold	


Liquid	



θ	


Ly	

Ly/10	



x	



y	



G	



Figure 3: Schematics of the wedge geometry. A sin-
gle dendrite initially grows in a narrow channel 10
times smaller than the total size of the domain Ly,
which opens up to the final y-size with an angle θ.

In order to illustrate how multiscale these DNN sim-
ulations are, for the three experimental growth ve-
locities, Table 2 lists the main length scales of the
problem, namely the capillarity length at the steady-
state tip location d∗0, the steady-state dendritic tip
radius ρs, the diffusion length D/Vp, and the thermal
length lT , spanning seven orders of magnitude.

Table 2: Length scales in the DNN simulations.

Growth velocity V 40 106 285 µm/s

Capillarity length d∗0 3.3 3.2 3.1 nm
Dendrite tip radius ρs 2.9 1.8 1.1 µm
Diffusion length D/Vp 75 28 11 µm
Thermal length lT 79 79 79 mm

Results and Discussion

First, we discuss the DNN predictions of stable spac-
ing Λ versus growth velocity Vp. In Fig. 4, small grey
symbols represent the first series of simulations start-
ing with two needles: squares show stable spacings,
down-pointing triangles show initial spacings result-
ing in the elimination of one of the initial dendrites,
and up-pointing triangles show simulations resulting
in tertiary branching events with creation of a new
primary dendrite. For clarity, only a few of these
simulations are reported in Fig. 4, as the lower (elim-
ination) limit Λmin and an upper (branching) limit

Λmax are estimated up to a precision of ±∆x. The
stability limits are fitted to power laws Λ ∼ V −α,
and plotted in Fig. 4 as solid lines with α = 0.68
and 0.53, respectively for Λmin and Λmax. Both lim-
its are relatively well approximated by Λ ∼ V −1/2,
in black dotted lines in Fig. 4. In contrast with the
assumption that the ratio Λmax/Λmin is close to 2 or
3 (see e.g. [13]), we find a ratio of 4 between pref-
actors of the fits to V −1/2 (exactly 3.97), in agree-
ment with quantitative phase-field simulations for a
succinonitrile-salol alloy [15].

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200  250  300

P
ri

m
ar

y 
sp

ac
in

g 
Λ

 (
μ

m
)

Growth velocity Vp (μm/s)

Elimination

Stability

Branching

Experiments

DNN model:  Planar (θ = 0˚)

Cross-section (θ = 90˚)

Λ ~ V-α
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Figure 4: Primary dendritic spacing versus growth
velocity. Grey symbols represent simulations identi-
fying the stable spacing range, i.e. starting with two
primary dendrites until elimination instability (5),
branching instability (4), or steady-state stability
(�). The predicted spacings after a planar front
destabilization (×, see Fig. 5a), and sudden cross-
section widening (+, see Fig. 5e) show individual
steady-state spacings . Experimental measurements
(◦) show the average spacing for each velocity.

Experimental measurements of primary spacings
from X-ray imaging appear as green circles in Fig. 4.
The measurements fall within the predicted stable
range. However, they are close to the upper limit
Λmax. In comparison, Fig. 4 shows the spacings
observed for the second series of spatially extended
DNN simulations, which are mostly within the lower
half of the stability range, similarly as in 2D [16],
for both the case of a planar interface destabiliza-
tion (Fig. 5a) and the case of a sudden cross-section
widening (Fig. 5e). As seen in Fig. 4, the highest
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spacings observed in the simulations among about
15 spacings are relatively close to experimental mea-
surements. To ensure numerical convergence with
the grid spacing ∆x, we achieved similar simulations
with ∆x ≈ ρs, i.e. with a grid spacing twice smaller,
which yielded similar primary spacing selection.

The discrepancy between simulations and experi-
ments may be in part attributed to the uncertainty
in the selection parameter σ for Al-Si alloys. Its
value depends upon interface anisotropy that has
only been estimated for an Al-Cu alloy [47], which
could differ for Al-Si. The value used in the cur-
rent simulations derives from atomistic simulations
for pure Al [45], combined with linear solvability the-
ory [38]. Exploratory simulations for planar desta-
bilization and cross-section widening with a lower
σ = 0.02 at V = 106 µm/s yielded a much broader
spacing range from 150 to 530 µm, which includes
the experimental point of Fig. 4. Hence, the value of
the selection parameter σ for Al-Si alloys warrants
further investigation, in order to reach a fully quanti-
tative comparison of modeling with experiments. In
comparison, DNN simulations compared to measure-
ments during directional solidification of an Al-Cu
alloy lead to a much better agreement [36].

Other possible sources of discrepancy between simu-
lations and experiments include: the limited sample
size of the measurements (e.g. only two spacings in
Fig. 2); solutal convection (observed in Al-Cu thin
samples [48]); the development of a solute boundary
layer during the thermal stabilization of the melted
sample [49]; the thermal inertia of the setup at the
initiation of cooling [50]; as well as uncertainties in
materials parameters and processing conditions.

Interestingly, spacing selection after planar desta-
bilization and cross-section widening yield similar
spacings, unlike in 2D where both DNN [16] and
phase-field [17] systematically predict larger spac-
ings from branching than from planar destabiliza-
tion. This could be a dimensionality effect, as the
solute field around a dendrite is very different in 2D
and 3D, with the constraint of in-plane solute redis-
tribution in 2D perhaps leading to a tertiary branch-
ing inhibition, thus yielding a higher Λmax. These
observations warrant further investigation.

(a) Planar (θ = 0˚)	



(b) Wedge (tan θ = 0.1)	



(c) Wedge (tan θ = 1)	



(d) Wedge (tan θ = 10)	



(e) Cross-section(θ = 90˚)	



x 
y 

Figure 5: Spacing selection during directional solid-
ification at V = 106 µm/s for different geometries:
(a) destabilization of a planar front; (b)-(d) progres-
sive cross-section widening with a wedge angle θ for
tan(θ) = (b) 0.1, (c) 1, and (d) 10; (e) abrupt cross-
section widening. Videos of (a), (c), and (e) are
attached as supplementary material.
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(a) V = 40 μm/s	



(b) V = 106 μm/s	

 150 μm	



Λ<Λmin	

 Λ > Λmin	

Λ > Λmin	



Λ<Λmin	

 Λ > Λmin	

Λ > Λmin	



200 μm	

Λmin	



Λmin	



(c) V = 285 μm/s	
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Λ<Λmin	

 Λ > Λmin	

Λ > Λmin	



Λmin	



x 
y 

Figure 6: Asymmetrical solute fields enabling stable
primary spacings Λ lower than the elimination limit
Λmin, illustrated for the planar destabilization sim-
ulations at (a) V = 40 and (b) 106 µm/s and the
cross-section widening case at (c) V = 285 µm/s.
The color map represents the u(x, y) field in the
(z = 0) plane, with white contour lines from u = 1
(top) with downward steps of 0.001.

In simulated arrays, some spacings are slightly lower
than the elimination limit Λmin (Fig. 4). This is
due to the inhomogeneity of spacings throughout the
sample. In Fig. 6, we illustrate how the asymmetri-
cal solute distribution around dendrite tips can lead
to a spacing between two dendrites Λ < Λmin, if
the spacings on the outer sides of the two dendrites
are sufficiently higher than Λmin. If we calculate an
average spacing on the two sides of each dendrite,
it falls within the stable limits of Fig. 4. While
the current implementation of the model prevents
the lateral drift of primary dendritic trunks, in ex-
periments or phase-field simulations dendrites would
slowly drift to evolve toward an homogeneous distri-
bution of spacings.

The final series of simulation explores the influence of
geometry on spacing, by changing the rate of widen-
ing of the sample cross-section at Vp = 106 µm/s.
The results of these simulations are reported in
Fig. 7, with simulations for tan(θ) = 0.1, 1, and 10
also illustrated in Fig. 5b-d. Fig. 7 does not exhibit
any conclusive θ-dependence of the selected primary
spacings. This is in agreement with 2D phase-field
simulations that suggested that the primary spacing
selection within a grain is not affected by the orienta-
tion of the boundary with the neighboring grain [17].
These results show that solidification conditions —
i.e. cooling rate, growth velocity, thermal gradient
— have a more crucial influence over spacing se-
lection than the geometry of the mold. Of course,
unless thermal conditions are constrained, the ge-
ometry of a casting mold has a crucial influence on
those solidification conditions, which is usually why
wedge-shaped molds are used to study microstruc-
ture selection in presence of a gradient of thermal
conditions. These results suggest that an indirect
coupling between thermal modeling of a cast ingot
and local modeling of microstructure selection is a
valid approach for spacing selection (see examples
of such couplings with phase-field in Refs [51, 52]).
However, this type of coupling does not account for
the history-dependent selection of spacing.
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Additionally, as can be seen in Fig. 5c-e, simulations
at high θ yield a spacing distribution with spacings
at to the center of the domain in y among the largest
in the final array. This is illustrated in Fig. 8, where
we plot the average spacing around each dendrite
Λ, i.e. the average of the two spacings on the two
sides of a dendrite, as a function of its location in y
for six different simulations. Since we are compar-
ing different velocities and domain sizes, the spac-
ings are scaled between the calculated stability lim-
its Λmin and Λmax, and the y-positions are scaled
with respect to Ly, the total size of the domain in
y. The larger spacings at the center of the domain

are linked to the dynamics of the secondary branches
at the origin of new tertiary/primary branches, first
accelerating rapidly and then decelerating when tips
reach the sides of the domain. The size of the ar-
rays in the present simulations is not large enough
to draw quantitative conclusions on spacing distribu-
tions among the array, and this topic still warrants
deeper investigation. However, this illustrates how
the DNN method can produce insight into spacing
distribution in cast parts.
Finally, since the model was developed to overcome
phase-field computational limitations for simulating
concentrated alloys, it seems worth commenting on
the computational efficiency of the simulations pre-
sented in this paper. First, the largest simulations
presented here require less than 600 MB of RAM,
which makes them achievable with almost any GPU
released in the past few years. All simulations were
achieved on one Nvidia GTX680r, except for the
planar destabilization runs performed on a Nvidia
GTX TITANr. For the first series of simulations
pertaining to the spacing stability range, each simu-
lation took between 45 min (for 1380×30×100 µm3

over 60 seconds at V = 285 µm/s) and 140 min
(for 5776×1129×100 µm3 over 300 seconds at V =
40 µm/s). Simulations of the second series with
spatially extended domains took up to 17.5 h (for
a domain of 1.3×2.0×0.1 mm3 over 3 min at V =
285 µm/s). Simulations of the third series, for a
domain of 2.1×2.0×0.1 mm3 over 9 min at V =
106 µm/s, lasted between 8 and 12 hours. The cur-
rent study is thus fairly reasonable in terms of com-
putational resources. A similar study with quanti-
tative phase-field simulations would have been ex-
tremely challenging and computationally demand-
ing, if feasible at all. Therefore, without replacing
any of the existing models, we believe that the DNN
model completes the palette of available tools, and
paves the way for new studies of fundamental mi-
crostructure selection mechanisms in dendritic solid-
ification at an intermediate scale between phase-field
and volume-averaged approaches.

Summary, Conclusions, and Outlook

We have presented a three-dimensional version of the
Dendritic Needle Network (DNN) model for direc-
tional solidification. Using the model, we have pre-
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dicted the stable range of primary dendritic spac-
ings for an Al-9.8wt%Si alloy over a range of growth
velocities (40 to 285 µm/s), and explored the dy-
namical selection of primary spacings for spatially
extended dendritic arrays for different conditions,
namely after a planar front destabilization and dur-
ing a change of sample cross-section.

The spacings measured from in situ X-ray imaging of
directional solidification experiments fall within the
stable range predicted by the simulations. However,
simulated spacings in spatially extended arrays were
found to be smaller than the measured spacings.
Preliminary simulations suggest that a lower value
of the tip selection parameter σ, which still needs to
be identified for Al-Si alloys, yields a broader dis-
tribution of spacings that include the experimental
data point for V=106 µm/s. This is in agreement
with the expected trend of a small σ leading to a
larger tip radius for the same growth velocity, hence
yielding a larger spacing. These findings highlight
the importance of accurately determining σ, in order
to reach fully quantitative predictions of microstruc-
ture selection, while illustrating the potential of the
DNN modeling approach to provide computationally
efficient simulations of the effect of σ at the scale of
one to several grains.

We did not observe any influence of the rate of cross-
section widening on the selected spacings. In con-
trast to previous 2D simulations [16, 17], we did
not observe a systematic difference in primary spac-
ings selection from elimination/coarsening (i.e. af-
ter a planar front destabilization) and from tertiary
branching. These first three-dimensional applica-
tions of the DNN model also illustrate the potential
of the approach to predict spatial distributions of
spacings in a spatially extended sample.

The outlooks of this work are manyfold. They in-
clude polycrystalline implementations of the model
that account for different grain orientations and the
lateral drift of dendrites, and further coupling with
additional physics, such as convective transport in
the melt. We expect the DNN model and its ex-
tensions to yield deeper insight into microstructure
selection at an intermediate scale between phase-
field and volume-averaged grain dynamics models,
for instance exploring the fundamental mechanisms
of polycrystalline grain growth competition [17], the
influence of convective transport at the scale of ex-

tended dendritic arrays [53], or the columnar-to-
equiaxed transition [54].
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